Projective toric varieties as fine moduli spaces of quiver representations
Projective toric varieties as fine moduli spaces of quiver representations
This paper proves that every projective toric variety is the fine moduli space for stable representations of an appropriate bound quiver. To accomplish this, we study the quiver $Q$ with relations $R$ corresponding to the finite-dimensional algebra $\mathop{\rm End}\nolimits( \textstyle\bigoplus\nolimits_{i=0}^{r} L_i )$ where ${\cal L} := ({\scr O}_X,L_1, \ldots, L_r)$ …