Ask a Question

Prefer a chat interface with context about you and your work?

Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

We analyze several Galerkin approximations of a Gaussian random field $\mathcal{Z}\colon\mathcal{D}\times\Omega\to\mathbb{R}$ indexed by a Euclidean domain $\mathcal{D}\subset\mathbb{R}^d$ whose covariance structure is determined by a negative fractional power $L^{-2\beta}$ of a second-order elliptic differential operator $L:= -\nabla\cdot(A\nabla) + \kappa^2$. Under minimal assumptions on the domain $\mathcal{D}$, the coefficients $A\colon\mathcal{D}\to\mathbb{R}^{d\times d}$, $\kappa\colon\mathcal{D}\to\mathbb{R}$, …