Ask a Question

Prefer a chat interface with context about you and your work?

THE ERROR TERM IN THE SATO–TATE THEOREM OF BIRCH

THE ERROR TERM IN THE SATO–TATE THEOREM OF BIRCH

We establish an error term in the Sato–Tate theorem of Birch. That is, for $p$ prime, $q=p^{r}$ and an elliptic curve $E:y^{2}=x^{3}+ax+b$ , we show that $$\begin{eqnarray}\#\{(a,b)\in \mathbb{F}_{q}^{2}:\unicode[STIX]{x1D703}_{a,b}\in I\}=\unicode[STIX]{x1D707}_{ST}(I)q^{2}+O_{r}(q^{7/4})\end{eqnarray}$$ for any interval $I\subseteq [0,\unicode[STIX]{x1D70B}]$ , where the quantity $\unicode[STIX]{x1D703}_{a,b}$ is defined by $2\sqrt{q}\cos \unicode[STIX]{x1D703}_{a,b}=q+1-E(\mathbb{F}_{q})$ and $\unicode[STIX]{x1D707}_{ST}(I)$ denotes the Sato–Tate measure …