Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory
Asymptotic Spectra of Large (Grid) Graphs with a Uniform Local Structure (Part I): Theory
Abstract We are mainly concerned with sequences of graphs having a grid geometry, with a uniform local structure in a bounded domain $${\Omega} {\subset} \mathbb{R}^{d}, d \geq 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Ω</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . When $$\Omega = [0, …