Ask a Question

Prefer a chat interface with context about you and your work?

Generating functions for some families of the generalized Al-Salam–Carlitz q-polynomials

Generating functions for some families of the generalized Al-Salam–Carlitz q-polynomials

Abstract In this paper, by making use of the familiar q -difference operators $D_{q}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>D</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math> and $D_{q^{-1}}$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mi>q</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:msub></mml:math> , we first introduce two homogeneous q -difference operators $\mathbb{T}(\mathbf{a},\mathbf{b},cD_{q})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi><mml:mo>(</mml:mo><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:msub><mml:mi>D</mml:mi><mml:mi>q</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:math> and $\mathbb{E}(\mathbf{a},\mathbf{b}, cD_{q^{-1}})$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi><mml:mo>(</mml:mo><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>,</mml:mo><mml:mi>c</mml:mi><mml:msub><mml:mi>D</mml:mi><mml:msup><mml:mi>q</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:msub><mml:mo>)</mml:mo></mml:math> , which turn out to be suitable for dealing with the families of …