Ask a Question

Prefer a chat interface with context about you and your work?

Analytical properties of the Hurwitz–Lerch zeta function

Analytical properties of the Hurwitz–Lerch zeta function

Abstract In the present paper, we aim to extend the Hurwitz–Lerch zeta function $\varPhi _{\delta ,\varsigma ;\gamma }(\xi ,s,\upsilon ;p)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Φ</mml:mi> <mml:mrow> <mml:mi>δ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ς</mml:mi> <mml:mo>;</mml:mo> <mml:mi>γ</mml:mi> </mml:mrow> </mml:msub> <mml:mo>(</mml:mo> <mml:mi>ξ</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>υ</mml:mi> <mml:mo>;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>)</mml:mo> </mml:math> involving the extension of the beta function (Choi …