SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS
SOME ALGEBRAS IN TERMS OF DIFFERENTIAL OPERATORS
Let $C$ be a commutative ring and $C[x_1,x_2,\ldots]$ the polynomial ring in a countable number of variables $x_i$ of degree 1. Suppose that the differential operator $d^1=\sum_i x_{i} \partial_{i} $ acts on $C[x_1,x_2,\ldots]$. Let $\mathbb{Z}_p$ be the $p$--adic integers, $K$ the extension field of the $p$--adic numbers $\mathbb{Q}_p$, and $\mathbb{F}_2$ …