Prefer a chat interface with context about you and your work?
Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions
We prove the existence of positive radial solutions to the problem \begin{document}$ \begin{cases} -\Delta _{p}u = \lambda \ K(|x|)f(u)\ \text{in } |x|>r_{0}, \\ \dfrac{\partial u}{\partial n}+\tilde{c}(u)u = 0\ \text{on }|x| = r_{0},\ \ u(x)\rightarrow 0\text{ as }|x|\rightarrow \infty ,\end{cases} $\end{document} where$ \ \Delta _{p}u = div(|\nabla u|^{p-2}\nabla u),\ N>p>1, \Omega …