Ask a Question

Prefer a chat interface with context about you and your work?

Quasilinear asymptotically periodic Schrödinger–Poisson system with subcritical growth

Quasilinear asymptotically periodic Schrödinger–Poisson system with subcritical growth

Abstract The aim of this paper is establishing the existence of a nontrivial solution for the following quasilinear Schrödinger–Poisson system: $$ \left \{ \textstyle\begin{array}{l} -\Delta u+V(x)u-u\Delta(u^{2})+K(x)\phi(x)u=g(x, u),\quad x\in\mathbb {R}^{3}, \\ -\Delta\phi=K(x)u^{2}, \quad x\in\mathbb{R}^{3},\\ u\in H^{1}(\mathbb{R}^{3}),\qquad u&gt;0, \end{array}\displaystyle \right . $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mo>−</mml:mo> <mml:mi>Δ</mml:mi> <mml:mi>u</mml:mi> …