Ask a Question

Prefer a chat interface with context about you and your work?

Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretisation schemes

Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretisation schemes

Abstract We prove a new Burkholder–Rosenthal type inequality for discrete-time processes taking values in a 2-smooth Banach space. As a first application we prove that if $$(S(t,s))_{0\leqslant s\le t\leqslant T}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo>⩽</mml:mo> <mml:mi>s</mml:mi> <mml:mo>≤</mml:mo> …