Ask a Question

Prefer a chat interface with context about you and your work?

Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups

Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups

Abstract In this paper we describe the Euler semigroup $$\{e^{-t\mathbb {E}^{*}\mathbb {E}}\}_{t&gt;0}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo>{</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>t</mml:mi><mml:msup><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mrow /><mml:mo>∗</mml:mo></mml:mrow></mml:msup><mml:mi>E</mml:mi></mml:mrow></mml:msup><mml:mo>}</mml:mo></mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math> on homogeneous Lie groups, which allows us to obtain various types of the Hardy–Sobolev and Gagliardo–Nirenberg type inequalities for the Euler operator $$\mathbb {E}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> . Moreover, the sharp remainder terms of the Sobolev …