Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem
Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem
Abstract This paper is concerned with error estimates for the piecewise linear finite element approximation of the two-dimensional scalar Signorini problem on a convex polygonal domain $$\varOmega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Ω</mml:mi> </mml:math> . Using a Céa-type lemma, a supercloseness result, and a non-standard duality argument, we prove $$W^{1,p}(\varOmega )$$ <mml:math …