Global representation of Segre numbers by Monge–Ampère products
Global representation of Segre numbers by Monge–Ampère products
Abstract On a reduced analytic space X we introduce the concept of a generalized cycle, which extends the notion of a formal sum of analytic subspaces to include also a form part. We then consider a suitable equivalence relation and corresponding quotient $$\mathcal {B}(X)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>B</mml:mi><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> that we think of …