Ask a Question

Prefer a chat interface with context about you and your work?

Quantum Critical Point in the Itinerant Ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Ni</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Rh</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>

Quantum Critical Point in the Itinerant Ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Ni</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Rh</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>

We report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline ${\mathrm{Ni}}_{1\ensuremath{-}x}{\mathrm{Rh}}_{x}$ alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed continuously to zero at ${x}_{\mathrm{crit}}=0.375$ while the magnetic volume fraction remains 100% up to ${x}_{\mathrm{crit}}$, pointing to a second order transition. โ€ฆ