Unified Approach to Spectral Properties of Multipliers
Unified Approach to Spectral Properties of Multipliers
Let $\mathbb{B}_n$ be the open unit ball in $\mathbb{C}^n$. We characterize the spectra of pointwise multipliers $M_u$ acting on Banach spaces of analytic functions on $\mathbb{B}_n$ satisfying some general conditions. These spaces include Bergman-Sobolev spaces $A^p_{\alpha,\beta}$, Bloch-type spaces $\mathcal{B}_{\alpha}$, weighted Hardy spaces $H^p_w$ with Muckenhoupt weights and Hardy-Sobolev Hilbert spaces …