Ask a Question

Prefer a chat interface with context about you and your work?

ON LINEAR RELATIONS FOR DIRICHLET SERIES FORMED BY RECURSIVE SEQUENCES OF SECOND ORDER

ON LINEAR RELATIONS FOR DIRICHLET SERIES FORMED BY RECURSIVE SEQUENCES OF SECOND ORDER

Abstract Let $F_{n}$ and $L_{n}$ be the Fibonacci and Lucas numbers, respectively. Four corresponding zeta functions in $s$ are defined by $$\begin{eqnarray}\unicode[STIX]{x1D701}_{F}(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{1}{F_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{F}^{\ast }(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{(-1)^{n+1}}{F_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{L}(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{1}{L_{n}^{s}}},\quad \unicode[STIX]{x1D701}_{L}^{\ast }(s):=\mathop{\sum }_{n=1}^{\infty }{\displaystyle \frac{(-1)^{n+1}}{L_{n}^{s}}}.\end{eqnarray}$$ As a consequence of Nesterenko’s proof of the algebraic independence of …