Ask a Question

Prefer a chat interface with context about you and your work?

Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field

Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field

Abstract In this paper we investigate the existence of infinitely many solutions for nonlocal Schrödinger equation involving a magnetic potential $$ (-\triangle )_{A}^{s}u+V(x)u=f\bigl(x, \vert u \vert \bigr)u, \quad\text{in } {\mathbb {R}}^{N}, $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>△</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>A</mml:mi><mml:mi>s</mml:mi></mml:msubsup><mml:mi>u</mml:mi><mml:mo>+</mml:mo><mml:mi>V</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>u</mml:mi><mml:mo>=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo><mml:mo>)</mml:mo></mml:mrow><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mspace /><mml:mtext>in </mml:mtext><mml:msup><mml:mi>R</mml:mi><mml:mi>N</mml:mi></mml:msup><mml:mo>,</mml:mo></mml:math> where $s\in (0,1)$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi><mml:mo>∈</mml:mo><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:math> is fixed, $N&gt;2s$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>2</mml:mn><mml:mi>s</mml:mi></mml:math> , $V:{\mathbb {R}}^{N}\rightarrow {\mathbb …