On $\mathbb{Z}_{\text{8}}$ -Linear Hadamard Codes: Rank and Classification
On $\mathbb{Z}_{\text{8}}$ -Linear Hadamard Codes: Rank and Classification
The Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2(s)</sub> -additive codes are subgroups of Z <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2(s)</sub> , and can be seen as a generalization of linear codes over Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> . A Z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2(s)</sub> -linear Hadamard code is a binary …