Ask a Question

Prefer a chat interface with context about you and your work?

Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent

Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent

This paper is dedicated to studying the Choquard equation \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = (I_{\alpha}\ast|u|^{p})|u|^{p-2}u+g(u),\; \; \; \; \; x\in\mathbb{R}^{N},\\ u\in H^{1}(\mathbb{R}^{N}) ,\\ \end{array} \right. \end{equation*} $\end{document} where $ N\geq4 $, $ \alpha\in(0, N) $, $ V\in\mathcal{C}(\mathbb{R}^{N}, \mathbb{R}) $ is sign-changing and periodic, $ I_{\alpha} $ is the …