Boolean Product Polynomials, Schur Positivity, and Chern Plethysm
Boolean Product Polynomials, Schur Positivity, and Chern Plethysm
Abstract Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial $B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots …