Ask a Question

Prefer a chat interface with context about you and your work?

Plemelj–Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operators

Plemelj–Sokhotski isomorphism for quasicircles in Riemann surfaces and the Schiffer operators

Abstract Let R be a compact Riemann surface and $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> be a Jordan curve separating R into connected components $$\Sigma _1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> and $$\Sigma _2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Σ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:math> . We consider Calderón–Zygmund type operators $$T(\Sigma …