Ask a Question

Prefer a chat interface with context about you and your work?

KAM theorem for reversible mapping of low smoothness with application

KAM theorem for reversible mapping of low smoothness with application

Assume the mapping$ A:\left\{ \begin{array}{ll} x_{1} = x+\omega+y+f(x,y),\\ y_{1} = y+g(x,y), \end{array} \right. (x, y)\in \mathbb{T}^{d}\times B(r_{0}) $is reversible with respect to $ G: (x, y)\mapsto (-x, y), $ and $ | f | _{C^{\ell}(\mathbb{T}^{d}\times B(r_{0}))}\leq \varepsilon_{0}, | g |_{C^{\ell+d}(\mathbb{T}^{d}\times B(r_{0}))}\leq \varepsilon_{0}, $ where $ B(r_{0}): = \{|y|\le r_0:\; y\in\mathbb …