Ask a Question

Prefer a chat interface with context about you and your work?

Integral operators, bispectrality and growth of Fourier algebras

Integral operators, bispectrality and growth of Fourier algebras

Abstract In the mid 1980s it was conjectured that every bispectral meromorphic function <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>ψ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\psi(x,y)} gives rise to an integral operator <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>K</m:mi> <m:mi>ψ</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>y</m:mi> …