A new formulation for the numerical proof of the existence of solutions to elliptic problems.
A new formulation for the numerical proof of the existence of solutions to elliptic problems.
Infinite-dimensional Newton methods can be effectively used to derive numerical proofs of the existence of solutions to partial differential equations (PDEs). In computer-assisted proofs of PDEs, the original problem is transformed into the infinite Newton-type fixed point equation $w = - {\mathcal L}^{-1} {\mathcal F}(\hat{u}) + {\mathcal L}^{-1} {\mathcal G}(w)$, …