$L^p$ estimates for semi-degenerate simplex multipliers
$L^p$ estimates for semi-degenerate simplex multipliers
Muscalu, Tao, and Thiele prove L^p estimates for the "Biest" operator defined on Schwartz functions by the map C^{1,1,1}: (f_1, f_2, f_3) \mapsto \int_{\xi_1 < \xi_2 < \xi_3} \Big[ \prod_{j=1}^3 \hat{f}_j (\xi_j) \: e^{2 \pi i x \xi_j } \Big] \,d \vec{\xi} via a time-frequency argument that produces bounds for …