An algebraic approach to entropy plateaus in non-integer base expansions
An algebraic approach to entropy plateaus in non-integer base expansions
For a positive integer $ M $ and a real base $ q\in(1, M+1] $, let $ {\mathcal{U}}_q $ denote the set of numbers having a unique expansion in base $ q $ over the alphabet $ \{0, 1, \dots, M\} $, and let $ \mathbf{U}_q $ denote the corresponding …