On the equality problem of generalized Bajraktarević means
On the equality problem of generalized Bajraktarević means
The purpose of this paper is to investigate the equality problem of generalized Bajraktarevi\'c means, i.e., to solve the functional equation \begin{equation}\label{E0}\tag{*} f^{(-1)}\bigg(\frac{p_1(x_1)f(x_1)+\dots+p_n(x_n)f(x_n)}{p_1(x_1)+\dots+p_n(x_n)}\bigg)=g^{(-1)}\bigg(\frac{q_1(x_1)g(x_1)+\dots+q_n(x_n)g(x_n)}{q_1(x_1)+\dots+q_n(x_n)}\bigg), \end{equation} which holds for all $x=(x_1,\dots,x_n)\in I^n$, where $n\geq 2$, $I$ is a nonempty open real interval, the unknown functions $f,g:I\to\mathbb{R}$ are strictly monotone, $f^{(-1)}$ and $g^{(-1)}$ …