A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
Recent work has managed to learn cross-lingual word embeddings without parallel data by mapping monolingual embeddings to a shared space through adversarial training. However, their evaluation has focused on favorable conditions, using comparable corpora or closely-related languages, and we show that they often fail in more realistic scenarios. This work …