On the <i>K</i>-theory of certain extensions of free groups
On the <i>K</i>-theory of certain extensions of free groups
Abstract Since <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>Hol</m:mo> <m:mo></m:mo> <m:mrow> <m:mo>(</m:mo> <m:msub> <m:mi>F</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> $\operatorname*{Hol}(F_{n})$ embeds into <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo>Aut</m:mo> <m:mo></m:mo> <m:mrow> <m:mo>(</m:mo> <m:msub> <m:mi>F</m:mi> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> $\operatorname*{Aut}(F_{n+1})$ , one can construct inductively the subgroups <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> …