On Some Conjectures Concerning Critical Independent Sets of a Graph
On Some Conjectures Concerning Critical Independent Sets of a Graph
Let $G$ be a simple graph with vertex set $V(G)$. A set $S\subseteq V(G)$ is independent if no two vertices from $S$ are adjacent. For $X\subseteq V(G)$, the difference of $X$ is $d(X) = |X|-|N(X)|$ and an independent set $A$ is critical if $d(A) = \max \{d(X): X\subseteq V(G) \text{ …