Diophantine equations in moderately many variables
Diophantine equations in moderately many variables
We give upper bounds for the number of integral solutions of bounded height to a system of equations $f_i(x_1,\ldots,x_n) = 0$, $1 \leq i \leq r$, where the $f_i$ are polynomials with integer coefficients. The estimates are obtained by generalising an approach due to Heath-Brown, using a certain $q$-analogue of …