Limit theorems for some critical superprocesses
Limit theorems for some critical superprocesses
Let $X=\{X_{t},t\ge0;\mathbb{P}_{\mu}\}$ be a critical superprocess starting from a finite measure $\mu$. Under some conditions, we first prove that $\lim_{t\to\infty}t{ \mathbb{P}}_{\mu}(\Vert X_{t}\Vert \ne0)=\nu^{-1}\langle\phi_{0},\mu\rangle$, where $\phi_{0}$ is the eigenfunction corresponding to the first eigenvalue of the infinitesimal generator $L$ of the mean semigroup of $X$, and $\nu$ is a positive constant. …