A note on the gaps between zeros of Epstein's zeta-functions on the critical line
A note on the gaps between zeros of Epstein's zeta-functions on the critical line
It is proved that Epstein's zeta-function $\zeta_{Q}(s)$, related to a positive definite integral binary quadratic form, has a zero $1/2 + i\gamma$ with $ T \leq \gamma \leq T + T^{{3/7} +\varepsilon} $ for sufficiently large positive numbers $T$. This is an improvement of the result by M. Jutila and …