Ask a Question

Prefer a chat interface with context about you and your work?

FAILURE OF THE POINTWISE AND MAXIMAL ERGODIC THEOREMS FOR THE FREE GROUP

FAILURE OF THE POINTWISE AND MAXIMAL ERGODIC THEOREMS FOR THE FREE GROUP

Let $F_{2}$ denote the free group on two generators $a$ and $b$ . For any measure-preserving system $(X,{\mathcal{X}},{\it\mu},(T_{g})_{g\in F_{2}})$ on a finite measure space $X=(X,{\mathcal{X}},{\it\mu})$ , any $f\in L^{1}(X)$ , and any $n\geqslant 1$ , define the averaging operators $$\begin{eqnarray}\displaystyle {\mathcal{A}}_{n}f(x):=\frac{1}{4\times 3^{n-1}}\mathop{\sum }_{g\in F_{2}:|g|=n}f(T_{g}^{-1}x), & & \displaystyle \nonumber\end{eqnarray}$$ where $|g|$ …