A Superlocal Version of Reed's Conjecture
A Superlocal Version of Reed's Conjecture
Reed's well-known $\omega$, $\Delta$, $\chi$ conjecture proposes that every graph satisfies $\chi \leq \lceil \frac 12(\Delta+1+\omega)\rceil$. The second author formulated a local strengthening of this conjecture that considers a bound supplied by the neighbourhood of a single vertex. Following the idea that the chromatic number cannot be greatly affected by …