Ask a Question

Prefer a chat interface with context about you and your work?

Kähler–Einstein metrics: From cones to cusps

Kähler–Einstein metrics: From cones to cusps

Abstract In this note, we prove that on a compact Kähler manifold <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mpadded lspace="-0.6pt" width="-1.2pt"> <m:mi>X</m:mi> </m:mpadded> </m:math> \hskip-0.569055pt{X}\hskip-0.569055pt carrying a smooth divisor D such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>K</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>+</m:mo> <m:mi>D</m:mi> </m:mrow> </m:math> {K_{X}+D} is ample, the Kähler–Einstein cusp metric is the limit (in …