Small deviations of a Galton–Watson process with immigration
Small deviations of a Galton–Watson process with immigration
We consider a Galton–Watson process with immigration $(\mathcal{Z}_{n})$, with offspring probabilities $(p_{i})$ and immigration probabilities $(q_{i})$. In the case when $p_{0}=0$, $p_{1}\neq0$, $q_{0}=0$ (that is, when $\operatorname{essinf}(\mathcal{Z}_{n})$ grows linearly in $n$), we establish the asymptotics of the left tail $\mathbb{P}\{\mathcal{W}<\varepsilon\}$, as $\varepsilon\downarrow0$, of the martingale limit $\mathcal{W}$ of the process …