Ask a Question

Prefer a chat interface with context about you and your work?

Existence of $1D$ vectorial Absolute Minimisers in $L^\infty $ under minimal assumptions

Existence of $1D$ vectorial Absolute Minimisers in $L^\infty $ under minimal assumptions

We prove the existence of vectorial Absolute Minimisers in the sense of Aronsson to the supremal functional $E_\infty (u,\Omega ’)\!=\!\|\mathscr {L}(\cdot ,u,\mathrm {D} u)\|_{L^\infty (\Omega ’)}$, $\Omega ’\Subset \Omega$, applied to $W^{1,\infty }$ maps $u:\Omega \subseteq \mathbb {R}\longrightarrow \mathbb {R}^N$ with given boundary values. The assumptions on $\mathscr {L}$ are …