Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L ∞ L^{\infty}
Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in L ∞ L^{\infty}
Abstract Given the supremal functional <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mi>E</m:mi> <m:mi mathvariant="normal">∞</m:mi> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:msup> <m:mi mathvariant="normal">Ω</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:munder> <m:mrow> <m:mpadded width="+1.7pt"> <m:mi>ess</m:mi> </m:mpadded> <m:mo movablelimits="false"></m:mo> <m:mi>sup</m:mi> </m:mrow> <m:msup> <m:mi mathvariant="normal">Ω</m:mi> <m:mo>′</m:mo> </m:msup> </m:munder> <m:mo></m:mo> <m:mi>H</m:mi> …