The Weil-Petersson geodesic flow is ergodic
The Weil-Petersson geodesic flow is ergodic
We prove that the geodesic flow for the Weil-Petersson metric on the moduli space of Riemann surfaces is ergodic (and in fact Bernoulli) and has finite, positive metric entropy.Proposition 2.1.The image of the tangent vector (v 1 , v 2 ) ∈ T v T M under the derivative of …