Infinite-dimensional stochastic differential equations related to random matrices
Infinite-dimensional stochastic differential equations related to random matrices
Abstract We solve infinite-dimensional stochastic differential equations (ISDEs) describing an infinite number of Brownian particles interacting via two-dimensional Coulomb potentials. The equilibrium states of the associated unlabeled stochastic dynamics are the Ginibre random point field and Dyson’s measures, which appear in random matrix theory. To solve the ISDEs we establish …