Ask a Question

Prefer a chat interface with context about you and your work?

Products and Sums Divisible by Central Binomial Coefficients

Products and Sums Divisible by Central Binomial Coefficients

In this paper we study products and sums divisible by central binomial coefficients. We show that $$2(2n+1)\binom{2n}n\ \bigg|\ \binom{6n}{3n}\binom{3n}n\ \ \mbox{for all}\ n=1,2,3,\ldots.$$ Also, for any nonnegative integers $k$ and $n$ we have $$\binom {2k}k\ \bigg|\ \binom{4n+2k+2}{2n+k+1}\binom{2n+k+1}{2k}\binom{2n-k+1}n$$ and $$\binom{2k}k\ \bigg|\ (2n+1)\binom{2n}nC_{n+k}\binom{n+k+1}{2k},$$ where $C_m$ denotes the Catalan number $\frac1{m+1}\binom{2m}m=\binom{2m}m-\binom{2m}{m+1}$. On the …