Ask a Question

Prefer a chat interface with context about you and your work?

Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping

Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping

The following coupled damped Klein-Gordon-Schrödinger equations are considered \begin{document}$ \begin{eqnarray*} i\psi_t + \Delta \psi + i \alpha b(x)(|\psi|^{2} + 1)\psi & = & \phi \psi \chi_{\omega} \; \hbox{in}\; \Omega \times (0, \infty), \; (\alpha >0)\ \\\phi_{tt} - \Delta \phi + a(x) \phi_t & = & |\psi|^2 \chi_{\omega}\; \hbox{in}\; \Omega \times …