On multidimensional Mandelbrot's cascades
On multidimensional Mandelbrot's cascades
Let $Z$ be a random variable with values in a proper closed convex cone $C\subset \mathbb{R}^d$, $A$ a random endomorphism of $C$ and $N$ a random integer. We assume that $Z$, $A$, $N$ are independent. Given $N$ independent copies $(A_i,Z_i)$ of $(A,Z)$ we define a new random variable $\hat Z …