Hiperharmonik Fonksiyon Üzerine
Hiperharmonik Fonksiyon Üzerine
In this paper we investigate some properties of Hyperharmonic function defined$H_{z}^{(w)}=\frac{\left( z\right) _{w}}{z\Gamma\left( w\right) }\left( \Psi\left( z+w\right) -\Psi\left( w\right) \right)$where $\text{ \ \ }w\text{, }z+w\in\mathbb{C}\backslash\left( \mathbb{Z}^{-}\cup\left\{ 0\right\} \right).$ Using this definition we introduce harmonic numbers with complex index and we give some series of these numbers. Also formulas for the …