Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent
Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent
In this paper, we study the following fractional Kirchhoff equation with critical nonlinearity \begin{document}$ \Big(a+b\int_{\mathbb{R}^3}| (-\Delta)^{\frac{s}{2}} u|^2dx\Big) (-\Delta )^su+V(x) u = K(x)|u|^{2_s^*-2}u+\lambda g(x,u), \; \text{in}\; \mathbb{R}^3, $\end{document} where $ a,b>0 $, $ \lambda>0 $, $ (-\Delta )^s $ is the fractional Laplace operator with $ s\in(\frac{3}{4},1) $ and $ 2_s^* …