Improving some operator inequalities for positive linear maps
Improving some operator inequalities for positive linear maps
Let 0 < mI ? A ? m'I ? M'I ? B ? MI and p ? 1. Then for every positive unital linear map ?, ?2p(A?tB)?(K(h,2)/41p-1(1+Q(t)(log M'm')2) 2p?2p(A#tB) and ?2p(A?tB)?(K(h,2)/41p-1(1+Q(t)(logM'm')2) 2p(?(A)#t ?(B))2p, where t ? [0,1], h = M/m, K(h,2) = (h+1)2/4h, Q(t) = t2/2(1-t/t)2t and Q(0) = Q(1) …