Ask a Question

Prefer a chat interface with context about you and your work?

Finite-Volume Effects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:msubsup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>HVP</mml:mi><mml:mo>,</mml:mo><mml:mi>LO</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math>

Finite-Volume Effects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn><mml:msubsup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mi>HVP</mml:mi><mml:mo>,</mml:mo><mml:mi>LO</mml:mi></mml:mrow></mml:msubsup></mml:mrow></mml:math>

An analytic expression is derived for the leading-order finite-volume effects arising in lattice QCD calculations of the hadronic-vacuum-polarization contribution to the muon's magnetic moment a_{μ}^{HVP,LO}≡(g-2)_{μ}^{HVP,LO}/2. For calculations in a finite spatial volume with periodicity L, a_{μ}^{HVP,LO}(L) admits a transseries expansion with exponentially suppressed L scaling. Using a Hamiltonian approach, we …