Prefer a chat interface with context about you and your work?
The Fuglede conjecture for convex domains is true in all dimensions
A set $\Omega \subset \mathbb{R}^d$ is said to be spectral if the space $L^2(\Omega)$ has an orthogonal basis of exponential functions. A conjecture due to Fuglede (1974) stated that $\Omega$ is a spectral set if and only if it can tile the space by translations. While this conjecture was disproved …