An odd-power identity involving discrete convolution
An odd-power identity involving discrete convolution
Let be a power function $f_{r,M}(s)$ defined for every $s$ within the finite set $M$ as follows $$f_{r,M}(s)= \begin{cases} s^r, \ &s\in M,\\ 0, \ &\mathrm{otherwise}. \end{cases} $$ Let a discrete convolution of $f_{r,M}(s)$ be denoted as follows $\mathrm{Conv}_{r,M}[n]=(f_{r,M}*f_{r,M})[n]$. Let a real coefficients $A_{m,j}$ be given by the following recurrence …